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Abstract

This paper deals with an optimum design of
structural systems taking account of various sta-
tistical variations in strengths of materials, ap-
plied loads, fabrication processes, ete., and sub-
jective uncertainties associated with engineering

- judgements. Second-moment approximation is applied
to reliability analysis of structural systems and
an optimum design problem is set up to determine
an optimum structure minimizing the structural
weight based on safety index formats. The problem
is effectively solved by using a nonlinear pro-
gramming technique called SLP (Sequential Linear
Programming). Numerical examples are presented to
demonstrate the validity of the proposed design
procedure.

1. Introduction

Structural designs.are to be made from the sta-
tistical point of view® since many uncertainties?
are involved in the designs, and many studies have
been made of the optimum designs®™!* However,
these approaches have not been fully implemented
in design practice, partly because there are no
efficient methods for calculating multidimensional
probability distribution functions!®’!*~1® ang
partly because information on the statistical
properties of resistances and loads is limited.
Recently, efforts aimed at the implementation of
reliability-based design have been made, and reli-
ability analysis and design using the second mo-
ment approximation?’!7?!® is being accepted as a
feasible method. Some tentative designs have been
made of basic structural elements.!9°20 However,
these concepts are not fully extended to the
structural systems.l2’21

This paper deals with an optimum design of struc-
tural systems when various uncertainties encoun-
tered in structural designs, such as those of al-
lowable stresses of materials, applied loads, di-
mensions of structural elements due to fabrication
errors, mathematical models in stress analysis,
ete., are taken into account. By using first order
approximation, safety index formats are presented
for reliability evaluation of structural designs.
The optimum design problem is set up to determine
the structural system minimizing the structural
weight based on the safety index formats. The
problem is effectively solved by employing a non-
linear programming technique called SLP (Sequen-
tial Linear Programming). Numerical examples are
provided to demonstrate the validity of the pro-
posed method.
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2. Mathematical Model of Structural System

Consider a structural system which consists of
n elements with specified configuration. It is as-
sumed that there exist m failure modes and the
safety margins (Zi) are expressed in the form :

2, =T;(R1,Bay ..o R )-8, (L1sL2s e sDp) .
or =Cy§: 7LV YIRS SR ST 2PN 79

(2=1,2,...,m)

where T. =resultant strength of the i-th failure
mode
E% =resultant load of the Z-th failure mode

Céi =allowable stress of the Z-th element
Ui = applied stress of the Z-th element
53 =strength of the j-th element

X.=dimension such as cross-sectional area,
thickness, ete.
L. =1load acting on the structure

Failure of the structural system is assumed to oc-
cur if any one of the safety margins is negative,
i.e., Z.<0. The strengths of the structural ele-
ments afe determined by the allowable stress of
the materials to be used and their dimensions,
such as cross-sectional areas, thickness, ete.,
and they are given by
B =B Cyp )

There are many factors of variability in a
structural design. It is a wellknown fact that the
strengths of the materials have statistical varia-
tions due to variability in purity and composition
of their constituents and in manufacturing pro-
cesses. The loads are not always applied to the
structure as predicted in the design stage. The
dimensions may also deviate from the specified
values because of fabrication errors.

These factors are modeled as random variables
with appropriate distribution. However, data for
describing their distributions are not so amply
provided that their distributions can be exactly
specified. In practice, information may be limited
to their first- and second-order moments. Conse-
quently, correcting factors (N(.))”"8 are intro-
duced to compensate the errors in modeling the
random variables:

(4=1,2,...,n) (2)

~

C .=Np .C .

yd ~ Cyd yd

L.=N;.L. 3
- "Lj %5 )
X, =Ny.X,

J %5

where (?) denotes the theoretical model of (.).



Similarly, the functional forms of the safety mar-
gins and the strengths of the structural elements
are expressed, taking account of imperfections in
modeling:

>

Ty =Wy 75
S, =Ng, 5.
1 1T 1
~ G5
U, =my, b,
R,=Np.k,
JT R

The correcting factors given above permit also

to take account of modeling errors due to engineer-
ing judgements in stress analysis of the structural

systenm,

When the configuration of the structural system
and the materials to be used are specified, the
structural weight is given by

W=W(X1,Xz,---,Xn) (5}

3. Reliability Evaluation by Safety Index

As mentioned in the preceding section, data for
describing the random variables and the functional
forms of the quantities concerning the safety mar-
gins are not so complete that they are correctly
predicted. The statistical measures, which are
consistent with the information available in prac-
tice and convenient for application, are the means
and.variances or alternatively coefficients of
variation. Consequently, the following assumptions
are made of the various uncertainties:

(a) The means and coefficients of variation are

given of random variables, i.e., strengths of ma-
terials, dimensions and loads.
(b) The correcting factors N,

I have means 1.0 and
specified values of coefficients

of variation.

Using first order approximation, the mean and
Standard deviation of the safety margin are calcu-
lated as follows:

Zi =72_Si or Céi-ﬂi ©
°§i=oTi+0§i or oéyi+65
where T, =Ai(P1,P2:---:Rn)
8, =Ai(E1,Z2,...,ZZ)
-i :ai(ilsfzg---,x 3zlaz2:'-':EZ)
oF;= (W) * (T 2".7'?1 @ %%
o= (BW5;)2 (5% & (5; 0%,
J=1
°5i=(ANUi)z(ﬁi)2+j§1(ﬁzj)20§5+j§1(ai3)zcij

= n ~ A
02-=AN-2R-2*Z R1.22 . R.‘.zz.
;= (AVR;)*(R) j=1[(}.7) Oy i+ (F;2)0f ]
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- 27 32 24 )2+(A0 )2
Géyj_mcyj) Cp?r (86 =W, )7+ (AC, )

5 2 A 2. A% 32
of; =M (X3 (AX) ;(szxj) +(Aifj)
Of}j =(AL!7.)'2 (Zj)g (ALJ-)Z =(MLj)2+(ALj)2

A(-)=0(.y/ (*)=coefficient of variation in (-)

0(.)=standard deviation of ()

(*) =mean of (-)
7., =§2i evaluated at R =R,
] aRj g J
e t L.
i3 aLj evaluated a 7L
U Bﬁi 1 d f X.=X. and L .=L
U?j -5?;-eva uated a X5 L3
~ Bﬁi _ -
S t X.,=X, and L .=L.
i3 BLj evaluated a s =L
A Bﬁi o "
. = t ¢ .=C . and X.=X.
REJ ac,yjevaluated a i~y 75
~ Bﬁi - -
e t C ,=C . and X.=X.
ng 3X5 evaluated a yi~Cyd X5

It is seen from the above relations that the
correcting factors of the random variables (Ncyj,

.»Nr.) contribute only to increase in their re-
Wy ;0

sultant coefficients of variation., Hence, they are
treated in the following by embedding them in var-
iability in coefficients of variation of the ran-
dom variables.

Safety index formats require that the mean of
the safety margin (Z.) wust be larger than A
times standard deviafion (czi), 1e€.,

Z. (7

7
Eq.(7) enables us to take account of the var%ous
uncertainties in a structural design by consider-
ing convenience of design and availability of sta-
tistical information.

>A.07 (4=1,2,...,m)

147

The central factor of safety of the 7-th failure
mode, Z.e.,

12/3i or Cyi/Ui

e

SFi

(8)

is given by

{1+>\i/(ATi) 7y (a5 2. ()\iAT_LASi)Z}/{ 1- (A ;AT;) 2}
or
{1+>\i /(ACyi) Z+ (A0,;) 2 - (AiACyiAUi)l Y{1- (AiACyi) 23

when equality holds in Eq. (7).

Eq.(7) is shown in Appendix 1 to be equivalent
to the probability constraint on the failure prob-
ability of the Z-th failure mode:

. 9
Prob [Zi <0} <P »,
where Pg,; is the specified allowable fa?lure
probability. Hence, the safety index A; is related
to the allowable failure probability (Ejui) vhen
the probability distribution function of Z; is
known,



4. Optimum Design of Structural Systems

For the optimum design of structural systems,
the following assumptions are further made:

(1) The configuration of the systems is predeter-

mined. That is, the length of the structural

elements and load conditions are specified,
and thus the variables left to be determined
are cross-sectional areas, thickness, ete.

The materials to be used are specified and

the means and coefficients of variation in

their allowable stresses are given.

(3) The variables to be determined, such as cross-
sectional areas, thickness, ete., are random
variables with specified values of coeffi-
cients of variation. Consequently, their mean
values (Xj) are taken as design variables.

(4) The weight of the structural system is evalu-
ated by the design variables, Z.e.,

Wl %0, .05, BW(D)

where X_denotes an n-dimensional vector
X0, 1T,
The optimum design problem is stated as fol-
lows:
PROBLEM: Determine the optimum values of the design
variables to minimize the structural weight Eq.(10)
for the specified values of safety indexes to the
safety margins, Z.e.,
Minimize: W(X)
with respect to ¥ under the constraints:

Z;(X%) ZAioZi(X) (i=1,2,...,m)

(2

(10}
(}-(1’

(11)

where A7 are the given constants and the expres-
sions Z;(X) and Oz.(X) _are used to indicate that
they are functions of X,

This is a nonlinear programming problem and
also interpreted as a deterministic equivalent of
a stochastic programming problem since the proba-
bility constraints Eq.(9) are reduced to the con-
straints Eq.(11) as shown in Appendix 1.

The problems have been solved by using SUMT(Se-
quential Unconstrained Minimization Technique)??
combined with Fletcher-Reeves method and SLP(Se-
quential Linear Programming)2? which is briefly
illustrated in Appendix 2. The former is found to
be ineffective due to enormous computation time
required for the problems with design variables
more than four while SLP very effective even for
large scale problems. Hence, SLP is used in the
following examples.

5. Numerical Examples

Numerical examples are presented to illustrate
the design procedures.
Example 1. Box beam. Consider a simple box beam
whose cross section is shown in Fig.1. The string-
ers and webs are designated as £ and 7 (i=1,2,3,
4). The bending stresses of the stringers are
given by?23

MI -MIT MI MI
i XXz z2x B X2 X8 .
Z . IT —I2 xi + ITI ._I! zi (74:1:2’3:4)
£z X2 rz Xz

where I and I_ are moments of inertia of the cross-
sectionil area, I _ product of inertia, x, and a;
coordinates of thé Z-th stringer with respect to
the centroidal axes and M, and M, external bending
moments,

The shear stresses in the webs are given by
Ui+4 = (Qo"'q,i)/ti (2=1,2,3,4)

4
where qo = (-2 L B.q.)/2B
i=1 ©*

i 8§I -5 1T SI -S51T
q;= L (ZRF T, » TR R0,
toge1 Lalales Y T dolas 777
A. =cross-sectional area of the i-th string-
er
t. = thickness of the Z-th web

A
B. =area enclosed by the Z-th web and the
* lines to the centroid from the adjacent
stringers
4
B= X Bi
i=1
Sy, S, = external shearing forces

T =external torsional moment

The safety margins are given by
2, =C,.-U.]
¢ov (=1,2,3,4)
Zirg = Cyoi1Vz,4]

where C Z and C, . are the allowable stresses of
the © ’

1-th stringer and web.
The weight per unit length is given by

where 1. are the lengths of the webs and ) the
densitiés.

Zr
CI)MZ
1 1! 2

I — S
o_____eM_x ,L ij_ Xr
< P

[\

L 3! J
4 I 3
2},

Fig. 1 Box beam ( LR reference axes )
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The means of the cross-sectional areas of the
stringers and the thickness of the webs are taken
as the design variables. The data concerned are
listed in Table 1.

First, consider a case where no modeling errors
are considered. The optimum solutions are listed
in Table 2 for various values of safety indexes.
The central factors of the failure modes defined
by Eq.(8) are also given in the table. It is seen
that the optimum solutions move to the safety side
and thus the structural weight becomes heavy as
the values of the safety indexes are increased.

Table 3 shows the optimum designs in the case
where the modeling errors are taken account of.

By comparing the results with those of Table 2 in
the same values of the safety indexes, the optimum
values of the design variables are large when the
modeling errors are considered. Consequently, the
designs with modeling errors neglected result in
insufficient structural reliability.

Table 4 indicates the optimum solutions corre-
sponding to A;=4.0 when the coefficients of varia-
tion in allowable stresses, dimensions, loads and
modeling errors are changed from reference condi-
tions of Table 1. It is seen that the optimum de-
signs are sensitive to variability in the coef-
ficients of variation. The resulting designs are
also influenced by the load conditions as illus-
trated in Table 5.

Table 2 Optimum solutions for
when nomodelling errors are

Table 1  Data of box beam

(1) Data of materials
Allowable stress

Density

Member Material Cy_XloaPa ACy_ pix103kg/m3
Stringers
TorE5 707516 451 0.05  2.80
”Ppir web 2675-176  3.04  0.05  2.80
L°"§r web 5024-13  2.75  0.05 2.76
Sige4web 2024-T3  2.75  0.05  2.76
X2
(2) Data of loads
M, M, T Sz %a
KN-m kN-m KkN-m kN __ ki
Mean 68.6 15.7 4.41 19.6 49.0
c.0.v¥ 0.1 0.1 6.1 0.1 0.1

* Coefficient of variation
(3) Coefficients of variation in design varia-
bles : M ;=0.02, At;=0.02 ( J=1,2,3,4 )

(4) Distance between stringers : 1o=240 mm

various values of safety indexes
considered ( Box beam, ANy;;=0.0 )

At El A Zg 4, 1 t2 ts ty W
T wm® nmt omm® nm® mm mm mm mn_ kg/m
0 284 350 278 356 0.13 0.30 0.01 0.44 4.193
(1.00) (1.00) (1.00) (1.00) (1.00) (1I.00) (1.00) (T.00) *°
1 350 358 284 424 0.13 0.32 0.03 0.51 4.666
(1.13) (1.11) (1.13) (1.11) (1.09) (1.13) (1.43) (1.11) ™~
398 388 311 475 0.13 0.36 0.04 0.56 5.182
(1.26) (1.22) (1.26) (1.22) (1.19) (1.27) (1.7%) (1.22)
3 440 428 349 519 0.15 0.40 0.05 0.62 5.731
(1.44) (1.34) (1.41) (1.34) (1.30) (1.42) (2.20) (1.3%)
492 465 382 574 0.16 0.44 0.06 0.68 6.319
4 (1.55) (1.47) (1.56) (1.47) (1.42) (1.57) (2.49) (1.47) "
5 527 525 439 613 0.18 0.50 0.07 0.73 6.955
(L.72) (1.61) (1.72) (1.61) (1.54) (1.75) (3.51) (1.61) "~

Note: Numbersin brackets designate central factors of safety.

Table 3 Optimum solutions for
when modelling- errors are

various values of safety indexes
considered ( Box beam,ANUi=0.1 )

Zl 1-4'2 Za Zu l::l ta 23 ty W

mm® mm® mm? mm mm mm mm o kg/m

1 361 371 292 440 0.13 0.33 0.03 0.53 4.824
(1.16) (1.15) (1.16) (1.15) (1.14) (1.17) (1.44) (1.15)

2 424 410 325. 509 0.14 0.38 0.05 0.60 5.500
(1.33) (1.30) (1.34) (1.30) (1.28) (1.34) (1.73) (1.30) ~°

3 455 486 393 548 0.17 0.44 0.05 0.60 6.213
(1.51) (1.46) (1.51) (1.46) (1.43) (1.53) (2.79) (1.46) °°

4 535 520 419 635 0.18 0.48 0.06 0.66 6.963
(1.70) (1.63) (1.70) (1.64) (1I.60) (1.71) (Z.e1) (1.63) °*

5 610 566 457 718 0.19 0.53 0.08 0.85 7.762
(1.90) (1.81) (1.91) (1.82) (1.77) (1.91) (2.78) (1.82) '*

Note: Numbers in brackets designate central factors of safety.
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Table 4 Effect of variability on optimum solutions ( Box beam , Ai=4.0 )

2, A, As 8 E f2 T3 . W
AcymACysz ALj ij ANys mm? mm? mn® i mom mm mmn kg/m
535 520 419 635 0.18 0.48 0.06  0.75
0.05 0.1 0.02 0.1 77355 (To63) (T.70) (1.60) (1.60) (I.7D) (2.61) (L.68) °-963
656 597 472 781 0.20 0.56 0.08 0.92
0.1 0.1 0.02 0.1 5550 (To65) (Z.0D) (1.95) (1.92) (2.02) (2.55) (1.96) 5-268
647 615 523 737 0.20 0.60 0.10 0.88 g 54
(2.10) (T.9D) (2.10) (1.92) (L.79) (2.12) (3.35) (L.91)
535 526 425 636 0.18 0.49 0.07 0.76 o o0,
T.7) (1.60) (T.7D) (1.65) (1.62) (1.73) (2.78) (1.65)
617 641 510 747 0.23 0.58 0.06 0.90 g 99
(7.00) (1.96) (2.00) (1.97) (1.94) (2.02) (3.12) (1.96)

Note: Numbers in brackets designate central factors of safety.

0.05 0.2 0.02 0.1

0.05 0.1 0.04 0.1

0.05 0.1 0.02 0.2

Table 5 Effect of load conditions on optimum solutions ( Box beam , Ai=4.0 )

Mx N Mg T S'x Ez Zl Zz Zg Zu tl %2 ta ?1. 174
KkN-m kN.m kN.m kN kN mm* mm> mm* mm mm mmn mm nam kg/m
535 520 419 635 0.18 0.48 0.06 0.75
68.6 15.7 4.41 19.6 9.0 345 (7763) (1.70) (1.64) (1.60) (L7D) (2.61)(1.64) o963
603 454 354 700 0.25 0.58° 0.1L 1.15 7.451
(1.70) (1.63) (1.71) (1.64) (1.60) (1.72) (2.24) (1.64)
756 750 599 907 0.18 0.49 0.06 0.75 9.455
(1.70) (1.63) (1.70) (1.64) (1.60) (1.71) (2.68) (1.63)
789 717 566 939 0.28 0.62 0.09 1.11
98.1 23.6 7.85 29.4 68.6 5 (T63) (L7D) (L.64) (L.60) (L73) (3.39) (L.63) 2-9%2
Note: (1) All the values of coefficients of variation in loads are 0.1 while other data
are kept to be the same as in Table 1.
(2) Numbers in brackets designate central factors of safety.

68.6 15.7 7.85 29.4 68.6
98.1 23.6 4.41 19.6 49.0

Example 2. Engine bed. Fig.2 represents an engine where 1; are the lengths of the members.
bed for V-type engines, which consists of the
tubular members. The loads in all the members of The design problem is to determine the optimum
the structure are value of thickness of the cylindrical members
§1 =-4L1-(2/3) L2, §2 =L1-(2/3)L, when the radii are specified. The data concerned

~ N are given in Table 6.
83 =2/3L1+(V3/3)L2, Sy =-L1+(2/3)L2

85 = -3L1-(4/3)L,

The strength of the member in tension is given
by l_
B. ;= Cy; (21t ,7.) 2 |_1

where C, tgs t; and r; are the yield stress, thick-
ness ang rad1us of the Z-th member, respectively. \
Compressive instability is considered for the mem- )
bers in compression and the compressive strength

for a cylinder of radius r; with thickness ¢; :Z
given by ‘l

t;
B, =Cyoy t(---) (2mt,r.) 600 5

where C . and E; are the stability constant and
Young's m%dulus of the i-th member.
The weight is given by Fig. 2 Engine bed

5
W= 'Z pizi(mtiri)
=1 -
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The optimum solutions are shown in Table 7 for
various values of safety indexes. It is seen that
the optimum values of the design variables become
large as the safety indexes are increased. Fig.3
shows the weight increases when the coefficients

Table 6 Data of engine bed
(1) Data of 6061-T6

of variation in allowable stresses, stability con-
stants and loads are increased from the refe?ence
conditions given in Table 6. The optimum designs
are known to be influenced by the values of coef-
ficients of variation in those random variables.

Table 7 Optimum solutions for various values
of safety indexes ( Engine bed )

_ Proog stress Young's ngulus Density
C o, .x , , .x10°% 3
yti 10°Pq Acytz E; %10 Pq pleo kg/m

2.76 0.05 6.86 2.70
(2) Radius of members
rymm ry;mm ryzmm P, mm rsmm
30.0 10.0 45.0 15.0 30.0

(3) Stability constants of compression mem-
bers : Eéci=o'4' Acyci=0'l (z=1,4,5)

(4) Length of members : 1,=750 mm
(5) Data of loads

L1=1350 N, L,=1800 W, ALj=0.l 7=1,2)
(6) Coefficients of variation in modelling :

ANTi=0'02’ ANSi=0'02 (=1,2,...,5)

(7) Coefficients of variation in thickness :
ANti=0'02 (2=1,2,...,5)

A t ta s y ts W

i __mm mm mm mm nm kg
0.61 0.08 0.72 0.09 0.61 0.997
(1.00) (1.00) (1.00) (1.00) (1.00) ~°
0.66 0.19 0.80 0.14 0.65 1.100
(1.15) (2.22) (1.11) (2.23) (1.14)
0,71 0.29 0.88 0.17 0.69 1.120
(1.33) (3.46) (1.23) (3.53) (1.32) ~~
0.76 0.40 0.98 0.21 0.75 1.331
(1.56) (4.73) (1.36) (4.96) (1.54)
0.84 0.51 1.08 0.24 0.82 1.407
(1.86) (6.06) (1.50) (6.58) (1.83) ™
0.93 0.63 1.20 0.27 0.91 1.635
(2.28) (7.46) (1.67) (8.55) (2.25) —°

Note: Numbers in brackets designate central
factors of safety.

(=]

L6 SR S )

1.2

1.0

0.6

Weight increase (w-—-Wo)/Wo

ACyci=0.2

08 4Lj=0.2
ACyti=0.1

<ANri, ANs;, 4t =004

Reference conditions
(Table 6)

0.0 1.0 20

30 40 50 60

Safety index X\;

Fig. 3 Effect of variability on weight increase

( Engine bed, W, : weight of optimum solutions

at A.=0.0 of
A

0
reference conditions in Table 6)
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Example 3. One-bay two-story frame structure.

Plastic design of one-bay two-Story frame struc-
ture is considered. Failure modes to be taken ac-
count of are shown in Fig. 4 and the following con-
straints are imposed on the relative strengths of
the members:

RgR,, ReB., R<R|, RgRc, RSRy, RysRy

The numbers added to the black circles of Fig. 4
correspond to those of collapse hinges. The safety
margins are listed in Table 8. The design varia-

|F‘~\\.,,f’1

"
i
L.
|
.
i
L
I

(1) (2)

bles are the cross-sectional areas of the members.
The moment capacities of the members are given l*

by 3/2
=kCy LA .
RJ x yJ J

where Aj’ Cy' and k are the cross-sectional area,

yield stress, of the j-th member and a constant,
respectively. The weight is given by

W= p{Z1 (A3+A6)+13(A1+A5)+Z4(A2+A4)}

where Zi are the lengths of the members.

(3) (4)

(5 (6)

(9) (10)

it

(13) (14)

(15)

Fig. 4 One-bay two-story frame structure and failure modes.
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Table 8 Safety margins of one-bay two- ~-story
frame structure

(a) Expressions for Ti and §i

The data concerned are listed in Table 9. Cor-

responding to the various values of the safety
indexes, the optimum designs are given in Table 10,
which illustrates that the design variables move
to the safety side as the safety indexes become
large.

The effects of variability in allowable stresses,

cross-sectional areas, loads and modeling errors

on the optimum solutions are illustrated in Table 11,
which shows that the values of the coefficients of

Hode T 54

1 Myp+2My3Myy (21/2)1,

2 Myt 2Mg* Mg (12/2)Ly

3 MytMstMyotMyy 13l

4 MztMyr Mg+Mg LyLy,

5 My2MgtMgtMy#2Myg My (21/2)L1+(15/2)L,
6 MpMg-MygtMyip2MygtMyy  (21/2) Lyt 1305

7 Mot Myt Mgt Mgr2 My 3+ My (21/2)Ly+ 1Ly,

8

Myt Myt Mq"‘z MG+M8+MI 0+M11 (Zz/Z)Lz" Z3L3

9 M3"’2 MG"Ma"‘Mg (Zz/z)Lz"‘ ZL‘LQ

10 M1t MyrMg*M1 1+ Mo+ M1y 13l (Lg+ L) Ly

L MyrMgr My 2MerMgrMy gt My (21/2)L1H(15/2) Ly L3Lg
oMy 3 My

12 Mp2 Mg MgtMgr2MygrMyy,  (11/2)D1( 12/2)Lo+luly

13 My My+MgeMy e 2My3+2Myy, (21/2)L1 42303+ (L3+0y) 0y

14 Mp2MerMorMy1+My My (L2/2)Lp+l3L3+(L3+1y)Ly

15 My+2Me+MgeMy1#2M13+2M1y (11/2)L1+(12/2)Lp+1305

+(La+ly) Ly

(b) Relations between plastlc moments of hinges
2? and members R; are given as follows:
17Mp=Ry, M

3=My =Ry Mg=M =M, =R ,Mo=M=F,
Myo=My =R, My p=M) 5=y, =Rg .

variation influence the resulting optimum design.

Table 9 Data of one-bay two-story frame
structure

{1) Length of members
Zlmm szm Z3mm Z4rnm
6096 6096 4572 4572
(2) Coefficients of variation
in strength of materials...AC j=0'05
in fabrication errors...... j =0,02
in modelling errors........AN -0 10

........Aﬂsi—O .10

Statistical data of loads

(3)
1 2 3 4
Zj 266.9 N 266.9 N 200.2 N 200.2 N
AL 0.1 0.1 0.1 0.1
(4) Data of materials
Yield stress ........... cy =2, 4SZXIO Pa
Density .....ovvenennn.. -7 833x10° kg/m>

Table 10 Optimum solutions for various values of safety indexes

( One-bay two-story frame structure )

A Al i ZZ ym® 33 - 24 - AS — Z6 mm® W kg
0 8174.2 4729.0 8174.2 8174.2 8174.2 15458.0 181.4
1 8638.7 5548.4 8638.7 8638.7 8638.7 16109.6 192.4
2 9096.8 6387.1 9096.8 9096.8 9096.8 16735.5 203.3
3 9561.3 7270.9 9561.3 9561.3 9561.3 17341.9 214.4
4 10045.1 8219.3 10045.1 10045.1 10045.1 17954.8 225.9
5 10561.3 9258.0 10561.3 10561.3 10561.3 18574.2 238.2
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Table 11 Effect of variability on optimum solutions ( One-bdy two-story frame structure,A;=4.0 ]

' 3 2 - 2 n 2 7 2 ) 2 n 2
Acyj ALj »AAj ANTi ANSi Al mm A2 mm A3 mm A4 mm A5 mm A6 mm W kg
0.05 0.10 0.02 0.10 0.10 10045.1 8219.3 10045.1 10045.1 10045.1 17954.8 225.93
0.10 0.10 0.02 0.10 0.10 10438.7 8851.6 10438.7 10438.7 10438.7 18419.3 234.68
0.10 0.20 0.02 0.10 0.10 10864.5 10793.5 10864.5 10864.5 10864.5 20735.4 255.25
0.05 0.10 0.02 0.20 0.10 12232,2 9774.2 12232.2 12232.2 12232.2 16290.3 252.18
0.05 0.10 0.02 0.10 0.20 10167.7 8554.8 10167.7 10167.7 10167.7 17754.8 227.69
0.05 0.10 0.04 0.10 0.10 10070.9 8264.5 10070.9 10070.9 10070.9 17987.1 226.51
i (7) A.M.Freudenthal (ed.), International Confer-
6. Concluding Remarks ence on Structural Safety and Reliability,
Pergamon (1972) pp.11-26.
This paper is concerned with an optimum design (8) R.H.Gallagher § 0.C.Zienkiewicz, Optimum De-
of structural systems to minimize the structural sign Theory and Applications, John-Wiley (19
weight based on safety index formats when various 73) pp.241-265.
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However, for the optimum design procedure to be design of structural systems, Proc. of the
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ous factors of the structural designs is to be con- nology and Science (Tokyo,1977} pp.1047-1054.
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Appendix 1. Interpretation of Safety Index
Introduce a standardized variate (25;) of the
safety margin by the transformation:

loy = (Z;-2;)/0g,

(A.1)
By the use of Zg. , failure probability of the i-
th failure mode iIs written as

Prob[Z, <0] = Prob[ZSi < ‘Zi/"Z.;] (A.2)

Denote by Fzsi the probability distribution func-
tion of Zsi’ t.e.,

Fzsi(z) =Prob[ZSi <z] (A.3)
From (A:Z) and (A.3), Eq.(9) is reduced to Eq.(7)
and A; is related to E}hi as follows:
-1
-F
Zgg

A4
g (A.4)

( Pfdi )
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Appendix 2. Sequential Linear Programming

Sequential linear programming is a method of
solving nonlinear programming problems, which uses
a linear programming algorithm sequentially in
such a way that in the limit the successive solu-
tions of the linear programming problems converge
to those of nonlinear programming problems. That
is, in the successive stages, solve the linearized
problem:

n

Minimize: WD) -¥@%)) = 1 g-g-
J=1

J
with respect to 6X§k) under the constraints:

sx®)
J

30y,

- *iaTji)5X§k) >2,05, 8%z, 2%,

(Z=1,...,m)

Adaptive move limits which 1limit the step size

of ngk) are used to secure the validity of the
linea? approximation and termination conditions on
the successive changes in the design variables and
the weight are also introduced to exclude the os-
cillation phenomena.



